大腦是終極計算機器,所以研究人員熱衷于嘗試模仿它也就不足為奇了?,F(xiàn)在,新的研究朝著有趣的方向邁出了一步,也就是一種能夠像我們的大腦一樣“忘記”事情的設備。
It's called a second-order memristor (a mix of "memory" and "resistor"). The clever design mimics a human brain synapse in the way it remembers information, then gradually loses that information if it's not accessed for an extended period of time.
它被稱為二階憶阻器(結合了“memory”(存儲器)和“resistor”(電阻器)這兩個詞)。這種靈巧的設計模仿了人腦突觸記憶信息的方式,也就是說,如果它長時間不接觸信息,就會逐漸失去這些信息。
While the memristor doesn't have much practical use just now, it could eventually help scientists develop a new kind of neurocomputer – the foundation of artificial intelligence systems – that fulfils some of the same functions a brain does.
雖然憶阻器目前還沒有什么實用性,但它最終可能有助于科學家開發(fā)出一種可以實現(xiàn)部分大腦功能的新的神經(jīng)計算機,這也是人工智能系統(tǒng)的基礎。
In a so-called analogue neurocomputer, on-chip electronic components (like the memristor) could take on the role of individual neurons and synapses. That could both reduce the computer's energy requirements and speed up computations at the same time.
在所謂的模擬神經(jīng)計算機中,芯片上的電子元件(如憶阻器)可以發(fā)揮單個神經(jīng)元和突觸的作用。這既可以降低計算機對能量的需求,同時又可以加快計算速度。
Right now analogue neurocomputers are hypothetical, because we need to work out how electronics can mimic synaptic plasticity – the way that active brain synapses strengthen over time and inactive ones get weaker. It's why we can hang on to some memories while others fade away, scientists think.
現(xiàn)在模擬神經(jīng)計算機只是一種假設,因為我們需要弄清楚電子設備應如何模擬突觸的可塑性,即活躍的大腦突觸可以隨著時間的推移而增強,而不活躍的突觸則會變弱??茖W家們認為,這就是為什么我們可以保留部分記憶,而其他的記憶則會逐漸消失。
Previous attempts to produce memristors used nanosized conductive bridges which would then decay over time, in the same way that memories might decay in our minds.
之前嘗試制造的憶阻器所使用的納米導電橋會隨著時間的推移而失效,就像記憶在我們的大腦中衰退那樣。