位于倫敦的谷歌人工智能子公司DeepMind,近日開發(fā)了一款自我訓(xùn)練的視覺計算機(jī)。據(jù)其首席執(zhí)行官介紹,這款計算機(jī)“僅利用幾張2D快照就能生成一個完整的3D場景模型”。
The system, called the Generative Query Network, can then imagine and render the scene from anyangle, said Demis Hassabis.
杰米斯·哈薩比斯表示,這套被稱為“生成式查詢網(wǎng)絡(luò)”的系統(tǒng)可以從任何角度想象和呈現(xiàn)場景。
GQN is a general-purpose system with a vast range of potential applications, from robotic vision to virtual reality simulation.
GQN是一個通用系統(tǒng),具有從機(jī)器人視覺到虛擬現(xiàn)實(shí)模擬的廣泛的應(yīng)用潛力。
"Remarkably, the DeepMind scientists developed a system that relies only on inputs from its own image sensors -- and that learns autonomously and without human supervision," said Matthias Zwicker, a computer scientist at the University of Maryland.
馬里蘭大學(xué)的計算機(jī)科學(xué)家馬蒂亞斯·茨威格稱:“值得一提的是,DeepMind的科學(xué)家開發(fā)了只依賴自身圖像傳感器所輸入信息,就可以自主學(xué)習(xí)的系統(tǒng),且無需人類監(jiān)督。”
This is the latest in a series of high-profile Deep Mind projects, which are demonstrating a previously unanticipated ability by AI systems to learn by themselves, once their human programmers have set the basic parameters.
這是DeepMind一系列備受矚目的項目中最新的一個,這些項目展示了一種之前未曾預(yù)料到的人工智能系統(tǒng)自學(xué)能力--在編程人員為其設(shè)定基本參數(shù)之后。
In October DeepMind's AlphaGo taught itself to play Go, the ultra-complex board game, far better than any human player. Last month another Deep Mind AI system learned to find its way around a maze, in a way that resembled navigation by the human brain.
去年10月,DeepMind的AlphaGo自學(xué)了圍棋這種超級復(fù)雜的棋類游戲,然后輕松擊敗了人類棋手。上個月,DeepMind的另一個人工智能系統(tǒng)學(xué)會了在迷宮中尋找路徑,其方式類似于人類大腦的導(dǎo)航功能。
Future GQN systems promise to be more versatile and to require less processing power than today's computer vision techniques, which are trained with large data sets of an notated images produced by humans.
未來的GQN系統(tǒng)有望比今天的計算機(jī)視覺技術(shù)的功能更為強(qiáng)大,所需的處理能力也會更低。目前的計算機(jī)視覺技術(shù)是用由人類生成的大量帶標(biāo)注的圖像數(shù)據(jù)集來訓(xùn)練的。
瘋狂英語 英語語法 新概念英語 走遍美國 四級聽力 英語音標(biāo) 英語入門 發(fā)音 美語 四級 新東方 七年級 賴世雄 zero是什么意思大連市遼師大住宅區(qū)英語學(xué)習(xí)交流群